Supporting Information: Tunable phonon-induced transparency in bilayer graphene nanoribbons
نویسندگان
چکیده
منابع مشابه
Tunable phonon-induced transparency in bilayer graphene nanoribbons.
In the phenomenon of plasmon-induced transparency, which is a classical analogue of electromagnetically induced transparency (EIT) in atomic gases, the coherent interference between two plasmon modes results in an optical transparency window in a broad absorption spectrum. With the requirement of contrasting lifetimes, typically one of the plasmon modes involved is a dark mode that has limited ...
متن کاملGraphene-Based Nanoresonator with Applications in Optical Transistor and Mass Sensing
Graphene has received significant attention due to its excellent properties currently. In this work, a nano-optomechanical system based on a doubly-clamped Z-shaped graphene nanoribbon (GNR) with an optical pump-probe scheme is proposed. We theoretically demonstrate the phenomenon of phonon-induced transparency and show an optical transistor in the system. In addition, the significantly enhance...
متن کاملTunable thermal rectification in graphene nanoribbons through defect engineering: A molecular dynamics study
Using non-equilibrium molecular dynamics, we show that asymmetrically defected graphene nanoribbons (GNR) are promising thermal rectifiers. The optimum conditions for thermal rectification (TR) include low temperature, high temperature bias, 1% concentration of single-vacancy or substitutional silicon defects, and a moderate partition of the pristine and defected regions. TR ratio of 80% is fou...
متن کاملFast and slow edges in bilayer graphene nanoribbons: Tuning the transition from band to Mott insulator
We show that gated bilayer graphene zigzag ribbons possess a fast and a slow edge, characterized by edge-state velocities that differ due to non-negligible next-nearest-neighbor hopping elements. By applying bosonization and renormalization group methods, we find that the slow edge can acquire a sizable interactioninduced gap, which is tunable via an external gate voltage Vg. In contrast to the...
متن کاملEffect of Tensile Strain on Thermal Conductivity in Monolayer Graphene Nanoribbons: A Molecular Dynamics Study
The thermal conductivity of monolayer graphene nanoribbons (GNRs) with different tensile strain is investigated by using a nonequilibrium molecular dynamics method. Significant increasing amplitude of the molecular thermal vibration, molecular potential energy vibration and thermal conductivity vibration of stretching GNRs were detected. Some 20%~30% thermal conductivity decay is found in 9%~15...
متن کامل